POWER EFFICIENT LOW POWER COLUMN BYPASS MULTIPLIER

<u>Rutesh S. Lonkar^{*}</u> <u>Tushar More^{*}</u> <u>V.R.Barwat^{*}</u>

ABSTRACT

Multiplication plays an important role in DSP & communication systems. Nowadays, these two systems are omnipresent in every engineering discipline. Multiplier being a core component of these systems affects their performance i.e. speed, area & power consumption. Hence, there is need of efficient multiplier architecture. The Multiplier is built using adder.

Low power consumption becomes one of the most important criteria for the fabrication of recent DSP and high performance systems. It is known that the multipliers are the main power eating elements of DSP and communication systems. If we can reduce the power consumption of the multiplier block, then we can reduce the power consumption of various digital signal processing chips and communication systems. This type of power efficient multipliers can be developed by reducing switching activities through architecture optimization. Reduction of switching activities through architecture optimization can be done using Column Bypassing Techniques (Turning off some columns in the multiplier array whenever certain multiplicand bits are zero). This paper presents power efficient multiplier structure based on Column Bypassing Techniques. The results shown at the end of this paper shows that there is 20% reduction in power as well as some reduction in memory requirement

Key words: Switching Activity, Array Multiplier, and Column Bypass Multiplier.

Corresponding Author: Rutesh S. Lonkar

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research http://www.ijmra.us

^{*} PIGCE-Nagpur (India)

INTRODUCTION

Where α is the switching activity parameter, C is the loading capacitance, V_{dd} is the operating voltage, and f_{clk} is the operating frequency. α C can also be viewed as the effective switching capacitance of the transistors' nodes on charging and discharging. Therefore, minimizing switching activities can effectively reduce power dissipation without impacting the circuit's operational performance.[3]

This paper presents a low power parallel multiplier, in which switching activities are reduced through architecture optimization, based on **Column Bypassing Technique**. This paper is organized as follows. In the next section we give the information about the basic parallel array multiplier structure. Subsequent sections threw light on Column bypassing technique, and last section gives the comparison of these structures based on power consumption and area overhead.

BASIC PARALLEL ARRAY MULTIPLIER STRUCTURE

For the multiplication of two unsigned n-bit numbers, the multiplicand $A = a_{n-1} a_{n-2} \dots a_0$ and the multiplier $B = b_{n-1} b_{n-2}, \dots, b_0$, the product $P = P_{2n-1}P_{2n-2}, \dots, P_0$, can be represented as the following equation:

To achieve the high-performance demand in DSP applications, the structure of a parallel array multiplier is widely used and a typical array implementation of such a parallel multiplier is the Braun's design as shown in Fig1.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research http://www.ijmra.us Volume 3, Issue 5

May 2015

SSN: 2347-65

Drawbacks:

- The number of components required in building the Braun Multiplier increases quadratically with number of bits (a m x n requires mx(n-1) adders & mxn gates). This makes Braun Multiplier **inefficient.**
- The adders of this multiplier performs summation of zero partial products also and, as a result, exhibit **redundant signal switching**. The increased activity in the internal nodes results in **unnecessary power dissipation**.[4]

COLUMN BYPASSING TECHNIQUE

Column Bypassing with reference to multiplier means turning **off** some columns in the multiplier array whenever certain multiplicand bits are zero. In this technique, during working, the operations in a column can be disabled if the corresponding bit in the multiplicand is 0, to save the power. This technique is totally depended on the number of zeroes in the multiplicand bits. The general idea of this technique is depicted in Figure 2.

Consider the multiplication shown in Figure 3, which executes 1010 X 1111. Note that, in the first and third diagonals (enclosed by dashed lines), two out of the three input bits are 0: the "carry" bit from its upper right FA, and the partial product aibj (note that a0 = a2 = 0). As a result, the output carry bit of the FA is 0, and the output sum bit is simply equal to the third bit, which is the "sum" output of its upper FA.

May 2015

<u>ISSN: 2347-6532</u>

To implement this technique, we have to modify our full adder required in general multiplication. This modified FA for column-bypassing multiplier is shown in Figure 4

Figure 4: The Modified FA Cell For Column Bypass Multiplier

Based on this, a 4x4 Column Bypass Multiplier structure as shown in Figure 5 is developed. Results for this multiplier structure are given in the subsequent section.

Volume 3, Issue 5

May 2015

<u>ISSN: 2347-653</u>

Figure 5: 4x4 Column Bypass Multiplier Structure

RESULTS

This section shows all results of Simple Array Multiplier (4x4 parallel) shown in fig.1 and 4x4 Column Bypass multiplier for power as shown in fig.5.We have simulated the above designs in Xilinx ISE9.1i and power is calculated using Xpower tool of Xilinx ISE9.1i.We implemented these designs on Spartan 3 FPGA. This section contains Simulation Results, Power Reports, Design Summary, and RTL Schematic for both designs.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

165

122

SSN: 2347-6532

Figure 6: Simulation Result (a) & Power Calculation (b) Of Simple Array Multiplier (4x4) for Multiplication (0011 x 0010)

Xiim SE - C:Wim91/Wyell/byell.ise - [Simulation]	🖕 📴 🔀 🚺 Xiinx XPower - (E_ColumnBypass)	- 2 🖄
File Edit Wew Project Source Process TestBench Simulation Window Help	🔐 🕅 🗵 💭 File: Edit Wew Tools Window Help	. 8 ×
D 👌 🖬 🖉 🖏 🖄 🐼 🖄 🖉 🖓 🖓 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉	B武武武武100 B 二 ロ・ロ・品 2 0 4 9	
(→ 二乙亚乙烯为为治疗目出出 非古产作 圓目編)詳 1000 ▼ ■ ▼		
	Violage fol Funcet in Power in A	ovright (c) 1995-2007 Xilinx, Inc. All rights reserved.
ource for Behavioral Simulation V	Vecint 1.2 Copyright (c) 1995-2	Kilinx, Inc. All rights reserved.
- Chyd 1000 ns 200 400 600	80 <u>Dynamic</u> 000 000	
B (0.0204026 19 10 413 (11 41	Usesser 25	
B Assisted		
2 M (01) 806	Diecord 1000 200	
	Uranic DO DO DE Desega: C: Autoxy Li byell E_Color	passacd
Open (b) (b) (b) Open (b) <		
receiles 🗙	Iolal Pow 3/23 Part: 3s2/01/250-4	
Hisarchy of page	Data versioa: ADVANCED,v1.0,11-03-	
🖟 🔁 zaa - Jao Hotbendh, airch	Summary Powers. Connects Inemia	
	<u></u>	
	🕀 🗎 Data Views	
	E Tepor Vens	
	Press Report	
	Power summary:	I(mA) P(mW)
	Total estimated power consum	d 37
	Vecint 1.20V:	10 12
	Vecant 2.50V:	10 25
	Vccn25 2.50V:	0 0
	Inputs:	0 0
5	Endeding device for amblication Rf Device from file '3s2DD.mob' in environment C:\Xiling1	7
Carrente Control A	"E ColumnBypars" is an NCD, version 3.1, device xc3s200, package ft256, speed -4	
Interest Design Summary Child States States	2007 0:	
	The power estimate will be calculated uping ADVANCED data.	
Simulator is doing circuit initialization process.		
Filines circuit initialization process.		
Constant Constant	3	
🗄 Cancole 👩 Enos 🔥 Warring: 🔂 Tid Shell 🙀 Findin Files 🛄 Sin Cancole - sae		
	Tel a	Summings a
Start Dates, Principhis, 📓 Rutes, Programmin, 📓 Strive - 12 - Clyster, 🔰 Woold-Park	CORONA C STAN Start Cress purch M. Con-Nousit Had Yutike-Part Start-12 - Claim.	
(a)	(b)	
(4)	(0)	

Figure 7: Simulation Result (a) & Power Calculation (b) Column Bypass Multiplier (4x4) for Multiplication (0011 x 0010)

Multiplication (0011 x 0010)

	SMUL P	roject Status				BYCLL I	Project Status			
Project File:	mulise	Current State:	Placed and Routed		Project File:	bycllise	Current State:	Placed and Routed		
Module Name:	_MULTIPLIER_SIMPLE	• Errors:	No Errors		Module Name:	E_ColumnBypass	Errors:	Errors: No Errors		
get Device: xc3s2	c3:200-4#256	• Warnings:	38 Warnings		Target Device:	xc3s200-4#256	Warnings:	2 Warrings		
Product Version:	GE 9.1i	Updated:	• Updated: Fri Jul 20 13:37:13:201		Product Version:	ISE 9.1i	Updated:	Fri Jul 20 13:42	Fri Jul 20 13:42:56 2012	
	SMUL Par	tition Summary				BYCLL Pa	utition Summary			
No partition information was found.					No partition information was found.					
						a : 10				
1. 1. DOT 10	Device Utili	ization Summary	DOT C		Louis Differences	Device Uti	ization Summary	Utilization	N-1	
Logic Utilization	Used	Available	Utilization	Note(s)	Logic Utilization	Used	Available		NO	
Number of Silce Hip Hops	17	3,840	1%		Number of 4 Apple Lons	30	3,040	14	_	
Number of 4 input LUTS	40	3,840	14	_	Logic Distribution	17	1 020	19/		
Logic Distribution		1.022			Number of occupied sides	17	1,320	14		
Number of occupied Silces	2	1,320	1%		Number of Slices containing only relat	ed logic 17	17	100%		
Number of Slices containing only related to	jic ZZ	22	100%		Number of Slices containing unrelated	logic 0	17	0%		
Number of Slices containing unrelated logi	. 0	22	0%		Total Number of 4 input LUTs	33	3,840	1%		
Total Number of 4 input LUTs	41	3,840	1%		Number of bonded OB:	16	173	9%		
Number used as logic	40				Total equivalent gate count for d	esign 198				
Number used as a route-thru	1				Additional JTAG gate count for IOBs	768				
Number of bonded IOBs	18	173	10%							
IOB Flip Flops	8				Performance Summary					
Number of GCLKs	1	8	12%		Final Timing Score:	0	Pinout Data:	Pinout Report		
Total equivalent gate count for desig	452				Routing Results:	All Signals Completely Routed	Clock Data:	Clock Report		
Additional JTAG gate count for IOBs	864				Timing Constraints:	All Constraints				

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

166

Figure 8: Deign Summary of Simple Array Multiplier(4x4)(a) & Column Bypass Multiplier(4x4)(b)

Figure 9: RTL Schematic of Column Bypass Multiplier (4x4)

CONCLUSION

It is found that, for all input combinations, the Simple Array Multiplier requires the same amount of power i.e. 38.77 Mw. It is found that the power consumption of Column Bypass multiplier (for 0011 x 0010) is 37mW which is approximately 2mW less than the Simple Array Multiplier for same input combination. It is also observed that the power consumption of Column Bypass multiplier depends on number of zeros in the input multiplicand as well as position of zero in the multiplicand. It is also found that the power consumption of Column Bypass multiplier [for (A=0000) x B)] is much less than Simple Array Multiplier i.e. 16mW, but not equal to zero. Total memory usage of Simple Array Multiplier is 139580 kilobytes, whereas total memory usage of Column Bypass multiplier is 138440 kilobytes

FUTURE SCOPE

As an attempt to develop arithmetic algorithm and architecture level optimization techniques for low-power multiplier design, the research presented in this dissertation has achieved good results and demonstrated the efficiency of high level optimization techniques.

However, there are limitations in our work and several future research directions are possible. Design can be modified for 8-bit or n- bit operation depending on the requirements. Proposed design is for unsigned multiplication. It can be enhanced for signed operation also. Designed multiplier is for fixed point binary number. It can be modified for floating point binary multiplications

REFERENCE

- ^[1] M. C. Wen, S. J. Wang and Y. M. Lin, "Low power parallel multiplier with column bypassing," IEEE International Symposium on Circuits and Systems, pp.1638-1641, 2005.)
- [2] A. P. Chandrakasan and R.W. Brodersen, "Minimizing power consumption in digital CMOS circuits," Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995.
- [3] Oscal T.-C. Chen, Sandy Wang, and Yi-Wen Wu, "Minimization of Switching Activities of Partial Products for Designing Low-Power Multipliers", Ieee Transactions On Very Large Scale Integration (Vlsi) Systems, Vol. 11, No. 3, June 2003
- [4] J. Ohban, V. G. Moshnyaga, and K. Inoue, "Multiplier energy reduction through bypassing of partial products," IEEE Asia-Pacific Conference on Circuits and Systems, pp.13–17, 2002.
- [5] Ying-Tsung Hwang, Jin-Fa Lin, Ming-Hwa Sheu, Chia-Jen Sheu," Low Power Multiplier Designs Based on Improved Column Bypassing Schemes", IEEE APCCAS 2006.
- ^[6] Jin-Tai Yan , Zhi-Wei Chen ," Low-Power Multiplier Design with Row and Column Bypassing ", IEEE International Conference On SOC, SOCC 2009, Pages 27 - 230
- [7] Mangal, S.K.; Deshmukh, R.B.; Badghare, R.M.; Patrikar, R.M., "FPGA Implementation of Low Power Parallel Multiplier ", 20th International Conference On VLSI Design, 2007, Pages-115-120.